Outline プロジェクト概要
豪雨や風水害をもたらす気象現象の、
正確な蓋然性推定を目指して。
For accurate estimation of the probability of weather phenomena
that caused wind and flood damage.
Member メンバー・体制
Achievement 研究・開発成果
-
論文(査読あり)
2024. 9. 12
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, Huawei Yang : Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0, Geoscientific Model Development , 17(17) 6761-6774, 2024, DOI : https://doi.org/10.5194/gmd-17-6761-2024
-
招待講演
2024. 7. 15
Thara Prabhakaran : Microphysics of Convective Clouds : Progress on the Understanding and Challenges, International Conference on Clouds and Precipitation 2024
-
論文(査読あり)
2024. 7. 5
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, Chunsong Lu : Simulation of marine stratocumulus using the super-droplet method : numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1, Geoscientific Model Development , 17(13) 5167–5189, 2024, DOI : https://doi.org/10.5194/gmd-17-5167-2024
-
論文(査読あり)
2024. 6. 28
Hugh Morrison, Kamal Kant Chandrakar, Shin-Ichiro Shima, Piotr Dziekan, Wojciech W. Grabowski : Impacts of Stochastic Coalescence Variability on Warm Rain Initiation Using Lagrangian Microphysics in Box and Large-Eddy Simulations, Journal of the Atmospheric Sciences, 81(6) 1067-1093, DOI : https://doi.org/10.1175/JAS-D-23-0132.1
-
論文(査読あり)
2024. 5. 10
Seiya Nishizawa : Extracting Latent Variables From Forecast Ensembles and Advancements in Similarity Metric Utilizing Optimal Transport, Journal of Geophysical Research : Machine Learning and Computation, 1(2), DOI : https://doi.org/10.1029/2023JH000112
-
招待講演
2024. 3. 15
Shin-ichiro Shima, Kotaro Enokido : Simulation of Pi chamber warm/mixed-phase experiments using the super-droplet method, 5th International Workshop on Cloud Turbulence, NiTech 2024, Japan
-
招待講演
2024. 3. 15
Yu Kim, Shin-ichiro Shima : Wake-induced CCN-activation behind precipitation particles and its implementation to the super-droplet method, 5th International Workshop on Cloud Turbulence, NiTech 2024, Japan
-
論文(査読あり)
2023. 11. 2
Toshiki Matsushima, Seiya Nishizawa, Shin-ichiro Shima : Overcoming computational challenges to realize meter- to submeter-scale resolution in cloud simulations using the super-droplet method, Geoscientific Model Development, 16(21), 6211-6245, DOI : https://doi.org/10.5194/gmd-16-6211-2023
-
論文(査読あり)
2023. 10. 6
Takumi Tomioka, Yousuke Sato, Syugo Hayashi, Satoru Yoshida, Takeshi Iwashita : Advantage of bulk lightning models for predicting lightning frequency over Japan, Progress in Earth and Planetary Science, 10, Article number : 60 (2023), DOI : https://doi.org/10.1186/s40645-023-00592-w
-
招待講演
2023. 5. 15
佐藤 陽祐 : メソ気象モデルにおける雲、エアロゾル、雷モデルの現状 , メソ気象研究会
-
論文(査読あり)
2023. 5. 4
Yousuke Sato, Mizuo Kajino, Syugo Hayashi, Ryuichi Wada : A numerical study of lightning-induced NOx and formation of NOy observed at the summit of Mt. Fuji using an explicit bulk lightning and photochemistry model, Atmospheric Environment:X, vol.18 100218, DOI : https://doi.org/10.1016/j.aeaoa.2023.100218
-
招待講演
2023. 3. 31
島 伸一郎 : 超水滴法で迫る雲降水システムの粒子レベルからの理解 , 伝熱技術フォーラム
-
招待講演
2023. 3. 17
島 伸一郎 : 超水滴法の現状と展望 , 令和4年度国立極地研究所・研究集会「2022 年度エアロゾル・雲・降水の相互作用に関する研究集会」
-
論文(査読あり)
2023. 3. 13
Yuta Kawai, Hirofumi Tomita : Numerical Accuracy Necessary for Large-Eddy Simulation of Planetary Boundary Layer Turbulence using Discontinuous Galerkin Method, Monthly Weather Review, 151(6), 1479-1508, DOI : https://doi.org/10.1175/MWR-D-22-0245.1
-
招待講演
2023. 3. 1
Shin-ichiro Shima : Super-Droplet Method and its Application to Mixed-Phase Clouds, Batsheva de Rothschild Seminar on Cloud-Climate Interactions Across Scales
-
招待講演
2022. 11. 24
足立 幸穂 : 領域気候研究のための力学ダウンスケール手法, 日中韓気象学会2022